TFT HiFiDUINO Pro update..

I finally managed to find the time to actually integrate my upgraded Buffalo III board into my Buffalo DAC.

In the process I discovered and took care of a number of bugs in my TFT HiFiDUINO Pro code.

The most serious bug was one that failed to properly initialize a new (blank) 24LC256 EEPROM chip. That effectively caused the code to crash.

Here is the change log:

v1.08 15/10/2017:

  • Fixed EEPROM init bug
  • Fixed DPLL settings bug & default DPLL settings for USB 2
  • Added alternative way of controlling Solid State Sidecar (via Pin A1)
  • Changed input names & icons to match my Buffalo III
  • Other minor bug fixes
  • Inverted power-on signal to make fully compatible with “TFT HiFiDuino” code
  • Inverted rotation of encoder to make fully compatible with “TFT HiFiDuino” code

v1.06 23/07/2017:

  • Initial release.

The new version of the code can be found at the project’s page.

ES9028Pro power wows

Following-up on my previous post, I soldered a Crystek 100MHz clock and had a new set of Trident replacement boards made for my upgraded Buffalo III.

The new boards are direct replacements for the Tridents, supplying 2 x 3.3V for AVCC_L & AVCC_R, 3.3V for the oscillator, 3.3V for the AVDD and 1.2V for DVDD.

Upon powering up the board with the new clock and power supplies, I noticed a problem. Whenever I tried to play material with sampling rate over 44.1KHz, the sound became garbled.

In my test rig I had also used the same power supplies with no problem, so I guessed that the problem had to be the new oscillator. But the new oscillator appeared to be working just fine.

To further complicate things, when I turned off oversampling and the DPLL filter the sound improved (but still sounded bad because I was doing no oversampling).

After some probing and prodding, I realized that my 1.2V supply was sagging below 0.9V when the sampling rates went above 44.1KHz. That should not be happening, since I had set the current limit on my LT3042 regulators to about 125mA with the data sheet specifying the 9028’s 1.2V supply current consumption to 82mA. But it appeared that my 9028 was pulling in a lot more current.

So I disabled current limiting and tried it again. This time everything was working just fine, with no sagging, but my LT was getting hot. Real hot. Like 80 degrees C hot when playing 352.8KHz material. So I did a couple of things. First I desoldered the 1.2V power supply and inserted my DMM in series in order to measure the actual current draw. I got these results:

44.1KHz -> 140mA
DSD64 -> 147mA
DSD128 -> 157mA
352.8KHz -> 200mA

So up to 200mA! No wonder my LT3042 was having a hard time.. I was working it very close to its thermal limits.

I decided to mount it vertically and to add a heat sink to the back of the PCB.

With this arrangement I was getting about 62 degrees C with 44.1KHz material and up to about 75 degrees with 352.8KHz. This is tolerable for 44.1KHz playback but not cool (pun intended 😛 ) for high sampling rates. Since 200mA is pretty much the LT3042’s upper current limit, I’ll have to design a new power supply, either with two paralleled LTs or some other LDO. The bigger problem is the heat dissipation. I will have to make the PCB as big as possible in order to have a lot of room for heat sinking.

But why does this chip’s actual power consumption differ so much from the published specs? As always, the devil is in the details. The stated 82mA is for a sampling rate of 48KHz and a clock frequency of 40MHz. I’m using a 100MHz oscillator so power consumption ought to go up, but I never expected it to increase so much. I wonder what will happen if I input a 768KHz signal.

Ideon Audio 3R USB Renaissance

OK, so this small Greek company comes up with a USB regenerator gadget targeted towards audiophiles.

They claim that it improves audio dramatically. It uncovers lost detail, enhances dynamics, etc.

We’ve heard all that hi-end mumbo-jumbo before, right?

Problem is, this time the gadget actually works. I didn’t believe it either until yesterday, when I was invited to a friend’s house. Also invited were a couple of friends and this little guy:

It was accompanied by its designer, Vasilis of Ideon Audio. Mind you, this is the same Vasilis that is behind the Mamboberry DACs.
I’ve known Vasilis for the better part of 10 years now. We have exchanged some pretty sharp remarks over the years, in regards to our shared hobby, but this time I must admit that he’s really on to something.

The 3R contains a TI chip with a low jitter clock and a bunch of LDOs. It is powered by an SMPS wall-wart (rumor has it that it works even better powered by a linear power supply).
What happens is that the 3R is detected by the PC as a USB device which essentially passes-through the DAC that it is connected to. It works like a USB hub – it’s an active device but it needs no drivers.
It works its magic by regenerating the USB signal using its own low jitter clock and low noise LDO regulators.

The end result is that the DAC manages to literally extract more detail from the music stream, be it from a PC or a Mac based transfort. It doesn’t matter what your DAC is – it will make a positive difference. We tested it with a Buffalo III dac (Amanero as receiver with no isolation) and with an Aune S16 (XMOS receiver, isolation, and FPGA doing FIFO and reclocking). In all cases, introducing the 3R into the chain made for better bass definition, more resolution, and better sound stage.

This is some upsetting stuff. This made me feel the same way I felt a few weeks back when I was auditioning Salas’ system and I could hear audible differences when we changed Foobar’s buffer length from 400ms to 1000ms. This shouldn’t happen, but it does.

I don’t know.. Perhaps this is a sign that I should switch to another hobby.

In conclusion, here is a picture of Darth Vader on the 3R:

If you have a half-decent USB dac and you’re serious about audio reproduction (a.k.a. you’ve already invested in a good sound system) you should get one. Not Darth Vader, the 3R.

New page: Super Solid-state Sidecar

I built a solid-state alternative to the TPA’s Sidecar.

2015-11-03 20.19.20_resize

Its main features are:

  • Switching between I2S and S/PDIF with bus switches (solid state devices).
  • Support for two I2S inputs, with source selection.
  • On-board LDO regulator with 4.9V output for the Buffalo III’s 4-input S/PDIF board.
  • Drop-in replacement for the Sidecar.

Schematic, PCB, etc. in its dedicated page: Super Solid-state Sidecar for Buffalo III